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A theoretical analysis of liquid–liquid counter-current flow in laminar boundary layers with a flat interphase
based on the similarity-variables method has been made. The numerical results for the velocity distribution in
both phases are obtained. The dissipation energy in a boundary layer is found and the results corresponding
to counter-current and co-current flows are compared. The comparison shows significant differences in the
dissipation energy values in the cases of co-current and counter-current flows.

Introduction.  Chemical technologies based on counter-current flows in liquid–liquid systems are widely dis-
tributed in practice. The theoretical analysis of such flows [1] demonstrates the possibility of obtaining asymptotic so-
lutions for gas–liquid systems which are in agreement with the experimental data obtained from thermo-anemometric
measurements of the velocity distribution in boundary layers.

The experience obtained in exact solution of the problem by means of numerical simulation [2] shows that it
is a non-classical problem of mathematical physics which is not sufficiently discussed in the literature. A prototype of
such a problem is the parabolic boundary-value problem with changing direction of time [3, 4].

Let us consider a mathematical description of a liquid flow in the boundary-layer approximation:
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where a positive velocity distribution
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Let us consider a negative velocity distribution as a solution of Eq. (1):

u (x, y) = − u0 (x, y) ,   v (x, y) = − v0 (x, y) ,

i.e., we get
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Comparison of Eqs. (2) and (3) shows that a negative velocity distribution is not a solution of Eq. (1).
It was shown [2] that this non-classical problem can be described as consisting of several classical problems.

The same approach will be used in the present work to determine velocity distribution in liquid–liquid counter-current
flows with a flat interphase. At first, we consider the flows of two immiscible liquids.

Mathematical Model. The mathematical description of the counter-current flows (Fig. 1) in approximation of
the boundary-layer theory has the following form:
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(4)

where y = 0 corresponds to a flat interphase between two liquids.
Problem (4) can be presented in a dimensionless form using two different coordinate systems for the two

phases, where the flows are oriented along the longitudinal coordinate. The following dimensionless variables and pa-
rameters are introduced:
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Fig. 1. Schematic of a counter-current flow.
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In the new coordinate systems, the model of counter-current flows has the following form:
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(6)

Method of Solution. Problem (6) cannot be solved directly because the velocities Ui change their directions
in the intervals 0 ≤ Xi ≤ 1 and 0 ≤ Yi < ∞. This non-classical problem of mathematical physics can be presented [3] as
a classical one after introduction of the following similarity variables:

Ui = fi′  ,   Vi = 
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Substitution of Eq. (7) into Eq. (6) leads to the following formulation:

2fi′′′  + fi fi′′  = 0 ;
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 f1′′  (0) = f2′′  (0) ,

(8)

where X1 + X2 = 1. Equation (8) has no solution in similarity variables but can be solved after introducing a new pa-
rameter θ

__
2 for each X1 8 (0, 1):
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Problem (8) is substituted by several separate problems for each X1 8 (0, 1), i.e., this has a local similarity solution. In
this way, the solutions of these separate problems can be obtained after introducing the function F such that

F (a, b) = 1 − f1′  (η1
∞) + 1 − f2′  (η2

∞) ,   a = f1′  (0) ,   b = f1′′  (0) . (10)

Here the values ηi
∞ should be determined in the solution.

The solution of Eq. (8) for each X1 8 (0, 1) is obtained after finding the minimum of the function F(a, b),
where the following boundary problem has to be solved at each step of the minimization procedure:

2fi′′′  + fi fi′′  = 0 ,   fi (0) = 0 ,

f1′  (0) = a ,   f2′  (0) = − 
a
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 ,   f1′′  (0) = b ,   f2′′  (0) = θ
__

2b .
(11)
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In so doing, we used the ODE 45 procedure of MATLAB 6.0.
Numerical Results. Problem (11) was solved numerically for counter-current liquid–liquid flows at different

values of parameters θ1 and θ2. From the requirement concerning the minimum of F(a, b) in (11), the boundary val-
ues of a, b, and F(a, b) were determined. The results obtained for a, b, η1

∞, and η2
∞ are shown in Table 1, where

ηi
∞ are derived from the condition fi′(ηi

∞) = 0.99.
The boundary conditions in Eq. (11) show that the velocity at the interphase becomes zero (as for the solid

interphase), when X1 = X1
0, so that

fi (0) = 0 ,   fi′  (0) = 0 ,   fi′′  (0) = 0.33205 , (12)

θ2 √1 − X1
0

X1
0  = θ

__
2 = 1 ,

(13)

which ensures the fulfillment of the condition fi′(∞) = 1.
It follows from Eq. (13) that the point X1

0, where the velocity changes its direction at the interphase
(ηi = 0), can be calculated directly at each θ2. According to numerical simulation, at this point we have f1′(0) ≈ 0 and
f2′(0) ≈ 0.

The results obtained show that there is a difference between η1
∞ and η2

∞ in liquid–liquid systems and η∞ = 5
in gas (liquid)–solid systems [5] and gas–liquid systems [7] (see Table 1).

Zero-Velocity Line and Boundary-Layer Thickness. Figure 1 shows that the counter-current flow is charac-
terized by the zero-velocity line y = h(x), where
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 ,   i = 1, 2 .
(14)

The hydrodynamic interaction between two liquids in counter-current flows is very active and differs greatly for vari-
ous couples of liquids. This is the cause of the different zero-velocity lines and boundary-layer thicknesses.

The results obtained permit one to determine the zero-velocity line Yi
0 and the laminar boundary-layer thick-

ness Yi
∞ = ηi

∞√Xi , with the values of ηi
∞ given in Table 1.

Energy Dissipation. The energy dissipated in the laminar boundary layer [6, 7] is described for both liquids
by the equation
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With the dimensionless variables the problem takes on the following form:

Ei = ∫ 
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Introducing the similarity variables leads to
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X1
ρ1µ1

 ⁄ (ρ2µ2) θ1 θ2 E1 E2 a b η1
∞ η2

∞

0.2

0.4939 0.1 22.22 0.88209 90.1

–0.0922 0.0010 21.5 2.25
0.4 –0.0947 0.0011 21.1 1.97
0.6 –0.0963 0.0012 21.0 1.55
0.8 –0.0976 0.0012 20.8 1.15
0.2

0.0034 0.3 0.355 0.7329 0.3137

0.0962 0.3275 4.70 6.71
0.4 0.1060 0.3263 4.68 8.09
0.6 0.10035 0.3269 4.71 9.06
0.8 0.08926 0.3280 4.67 10.3
0.2

0.4939 0.3 4.28 0.9598 5.05

–0.2088 0.01803 13.3 3.25
0.4 –0.2279 0.0238 12.5 3.12
0.6 –0.2424 0.02902 11.9 2.96
0.8 –0.2578 0.0355 11.5 2.66
0.2

1.9757 0.3 8.55 0.9342 17.72

–0.1807 0.1132 14.4 3.57
0.4 –0.2006 0.015836 13.6 3.30
0.6 –0.2168 0.0203 12.9 3.25
0.8 –0.2354 0.0264 12.2 3.04
0.2

20 0.3 27.22 0.8896 133.6

–0.13746 0.0045 16.9 3.92
0.4 –0.1548 0.0068 15.8 3.76
0.6 –0.1703 0.0093 15.0 3.55
0.8 –0.1899 0.0133 14.1 3.50
0.2

0.4939 0.5 1.99 0.9956 1.52

–0.2874 0.0514 10.6 3.69
0.4 –0.3170 0.0742 9.58 3.50
0.6 –0.3383 0.1002 8.85 3.28
0.8 –0.3543 0.1494 7.83 3.23
0.2

0.0034 0.7 0.1 0.5946 0.2742

0.2120 0.3110 4.39 10.1
0.4 0.18512 0.3155 4.44 11.3
0.6 0.1641 0.3194 4.48 12.2
0.8 0.1412 0.3223 4.53 13.5
0.2

0.4939 0.7 1.2 0.9095 0.9786

–0.3375 0.0989 8.94 3.92
0.4 –0.3572 0.1564 7.99 3.91
0.6 0.0938 0.3274 4.67 5.47
0.8 0.2451 0.3033 4.43 7.43
0.2

1.9757 0.7 2.4 0.9497 2.0513

–0.2918 0.05417 10.4 3.94
0.4 –0.3253 0.0832 9.48 3.92
0.6 –0.3475 0.1193 8.54 3.76
0.8 –0.3455 0.1953 7.16 3.75
0.2

20 0.7 7.64 0.9967 15.62

–0.2127 0.0191 13.0 4.10
0.4 –0.2446 0.0299 11.9 4.09
0.6 –0.2730 0.0430 11.1 4.09
0.8 –0.3079 0.0662 9.89 3.93
0.2

0.4939 1 0.703 0.7004 0.5194

–0.3429 0.2001 7.20 4.05
0.4 0.3020 0.2915 4.26 6.36
0.6 0.3543 0.2779 4.11 7.73
0.8 0.3375 0.2825 4.23 8.98
0.2

0.0034 1.5 0.032 0.6206 0.2189

0.3157 0.2885 4.23 13.1
0.4 0.2738 0.2985 4.31 14.3
0.6 0.24345 0.30505 4.37 15.4
0.8 0.2118 0.3112 4.45 16.7
0.2

0.4939 1.5 0.383 0.6276 0.3449

0.5290 0.2215 3.74 7.69
0.4 0.5126 0.2275 3.76 8.82
0.6 0.4765 0.2405 3.77 9.73
0.8 0.4260 0.2570 3.93 10.1
0.2

1.9757 1.5 0.765 0.7444 0.6799

–0.3424 0.20135 7.14 4.37
0.4 0.4982 0.2330 3.85 6.89
0.6 0.5293 0.2219 3.74 8.10
0.8 0.4959 0.2339 3.76 9.23
0.2

20 1.5 2.43 1.0027 2.48

–0.3054 0.0642 10.0 4.41
0.4 –0.3400 0.10345 8.79 4.36
0.6 –0.3541 0.1542 7.81 4.34
0.8 –0.2923 0.2582 6.31 4.48
0.2

0.0034 3 0.011 0.60 0.27

0.4398 0.2528 3.93 16.4
0.4 0.3889 0.2686 3.94 17.6
0.6 0.3518 0.2791 4.09 18.6
0.8 0.3128 0.2893 4.20 20.0
0.2

0.4939 3 0.135 0.4567 0.1289

0.7606 0.1245 3.12 11.6
0.4 0.6975 0.1535 3.25 12.4
0.6 0.6424 0.1770 3.48 13.0
0.8 0.5762 0.2040 3.54 13.8

TABLE 1. Numerical Simulation Results for Counter-Current Flows of Two Liquids
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In Table 1, the dimensionless energy dissipation Ei in the boundary layer is given for the case of liquid–liquid

counter-current flows at different θ1(θ1 = 
u2
∞

u1
∞

) and θ2. For co-current flows,  fi′′∗ does not depend on Xi , and the fol-

lowing relation is obtained for the dissipation energy:

Ei
∗
 = 2 ∫ 

0

∞



fi′′∗    


2
 dηi ,

(19)

where fi
∗ is the solution of Eq. (11) under the boundary conditions for co-current flows, and

θ1
∗
 = − θ1 ,   θ2

∗
 = θ2 ,   a

∗
 = f1′∗  (0) ,   b∗ = f1′′∗  (0) . (20)

In Table 2, the dimensionless energy dissipation Ei in the boundary layer is presented for the case of liquid–
liquid counter-current flows, which can be compared with the values Ei

∗ obtained for co-current flows. This table also
gives the boundary conditions (a* = a, b* = b) and the boundary-layer thickness (η1

∞∗ = η1
∞, η2

∞∗ = η2
∞) for co-current

flows in different systems at different velocities of the incoming flows. The results show that the energy dissipation
for co-current flows is lower than that for counter-current flows in the same system at the same velocity.

Conclusions. The results obtained allow one to determine the velocity distribution in counter-current and co-
current flows in liquid–liquid boundary layers. They open the possibility for a theoretical analysis of the heat- and
mass-transfer kinetics under these conditions. The comparison between co-current and counter-current flows shows sig-
nificant differences in the dissipation energy values. The boundary-layer thicknesses in two liquid–liquid laminar flows
greatly differ from the same quantities in the cases of gas (liquid)–solid and gas–liquid boundary layers, where
η∞ = 5 [8].

ρ1µ1
 ⁄ (ρ2µ2) –θ1 –θ2 a b η1

∞ η2
∞ E1 E2 E1

∗ E2
∗

0.4939 0.1 22.22 0.5413 0.2172 3.66 2.83 0.88209 90.17 0.1446 28.47
0.0034 0.3 0.355 0.3503 0.2793 4.08 2.63 0.7329 0.3137 0.2684 0.0233
0.4939 0.3 4.28 0.6240 0.1847 3.52 3.21 0.9598 5.05 0.1002 1.17
1.9757 0.3 8.55 0.7395 0.1340 3.21 3.12 0.9342 17.72 0.0500 2.30

20 0.3 27.22 0.8880 0.0607 2.57 3.08 0.8896 133.6 0.0096 4.40
0.4939 0.5 1.99 0.7215 0.1420 3.27 3.02 0.9956 1.52 0.0566 0.1743
0.0034 0.7 0.1 0.7174 0.1440 3.22 1.19 0.5946 0.2741 0.0583 0.0001
0.4939 0.7 1.2 0.8282 0.0913 2.89 2.62 0.9095 0.9786 0.0223 0.0283
1.9757 0.7 2.4 0.8795 0.0650 2.60 2.87 0.9497 2.0513 0.0111 0.0561

20 0.7 7.64 0.9478 0.0290 1.98 2.96 0.9967 15.62 0.0022 0.1098
0.4939 1 0.703 1.0 0 0 0 0.7004 0.5194 0 0
0.0034 1.5 0.032 1.4748 –0.3051 3.03 0.73 0.6206 0.2189 0.2015 0.0002
0.4939 1.5 0.383 1.3015 –0.1857 2.85 2.72 0.6276 0.3449 0.0784 0.0133
1.9757 1.5 0.765 1.2168 –0.1299 2.88 3.01 0.7444 0.6799 0.0394 0.0267

20 1.5 2.43 1.0967 –0.0566 2.33 3.24 1.0027 2.48 0.0078 0.0530
0.0034 3 0.011 2.9064 –1.5950 3.10 1.51 0.60 0.23 0.4130 0.0008
0.4939 3 0.135 2.2570 –0.9495 3.17 3.17 0.4567 0.1289 1.64 0.0455

TABLE 2. Numerical Simulation Results for Co-Current Flows of Two Liquids
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NOTATION

e, dissipation energy, kg⋅m/sec3; E, dimensionless dissipation energy; l, length, m; u and v, velocities in x and
y directions, m/sec; x and y, longitudinal and transverse coordinates, m; µ, dynamic viscosity, kg/(m⋅sec); ν, kinematic
viscosity, m2/sec; ρ, density, kg/m3. Subscripts and superscripts: i = 1 and 2, liquids 1 and 2; ∞, potential flow; 0,
zero-velocity line; *, co-current flow.
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